Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

An unusual acid: (\pm)-3-benzoyl-1,2-dimethyl-8a-phenyl-2-benzo-thieno[2,3-b]pyrrole-1,2-dicarboxylic anhydride

Giuseppe Bruno, ${ }^{\text {a* }}$ Francesco Nicoló, ${ }^{\text {a }}$ Archimede Rotondo, ${ }^{\text {a }}$ Massimiliano Cordaro, ${ }^{\text {b }}$ Francesco Risitano ${ }^{\text {b }}$ and Giovanni Grassi ${ }^{\text {b }}$

${ }^{a}$ Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá degli Studi di Messina, Via Salita Sperone 31, 98166 Vill. S. Agata - Messina, Italy, and ${ }^{\text {b }}$ Dipartimento di Chimica Organica e Biologica, Universitá degli Studi di Messina, Via Salita Sperone 31, I-98166 Vill. S. Agata - Messina, Italy Correspondence e-mail: gbruno@unime.it

Received 29 July 2005
Accepted 12 September 2005
Online 30 September 2005

The title compound, $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}$, is a 2-benzothieno[2,3-b]pyrrole derivative with several substituents, present in the crystal as a racemate. The tetracyclic fused-ring system shows a 'U-shaped' molecular architecture, since the two rings flanking the central pyrrolidine ring both point in the same direction.

Comment

Several syntheses of shape-specific molecules through heteroaromatic annulations in a cis-syn-cis mode have been achieved (Mehta et al., 1992). Often, 'U-shaped' structures are obtained and are driven by stereospecific syntheses (Albrecht et al., 1992), and they are considered to be a new class of potential molecular hosts (Marchand et al., 1990; Mehta et al., 1989, 1998). 2-Benzothieno[2,3-b]pyrrole derivatives have been produced in a domino cascade reaction starting from mesoionic 1,3-oxazolin-5-olates and thiocoumarins having an electron-withdrawing group at the 3-position (Grassi et al., 2005).

(I)

The crystal structure of the title compound, (I), contains molecules of (\pm)-3-benzoyl-1,2-dimethyl-8a-phenyl-2-benzo-thieno[2,3-b]pyrrole-1,2-dicarboxylic anhydride as a racemate.

The main body of (I) consists of four consecutive rings fused to each other by edge-sharing. The core pyrrolidine ring is flanked by a succinic anhydride group on one side and a benzothiophene group on the other. These condensed rings confer on the structure a ' U -shaped' configuration (endo form), with an angle between the mean benzothiophene and pyrrolidine planes of $68.5(1)^{\circ}$, and an angle between pyrrolidine and succinic anhydride planes of 68.9 (1) ${ }^{\circ}$ (Fig. 1). The succinic anhydride ring is close to being planar [maximum deviation from the mean plane for atom C23 of 0.037 (3) \AA], but the other five-membered rings show significant deviations from planarity.

Puckering analysis (Cremer \& Pople, 1975) of the thiophene ring ($\mathrm{S} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 9$) shows an E (envelope) conformation, with $Q=0.316$ (2) \AA and $\varphi=4.3(4)^{\circ}$. The same analysis of the pyrrolidine ring (C18/C3/C2/N16/C17) shows a ${ }^{3} T_{2}$ (twist) conformation $\left[Q=0.281(2) \AA\right.$ and $\left.\varphi=-95.1(5)^{\circ}\right]$, where the

Figure 1
A view of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 2
A view of the crystal packing of (I), showing a one-dimensional chain developing along the [101] direction. Atoms marked with an asterisk (*) or a hash (\#) are at the symmetry positions $(-x, 2-y,-z)$ and ($1-x$, $2-y, 1-z$), respectively.
pseudo-twofold symmetry axis passes through atom C18. The four atoms on the contact edges of this ring are stereogenic $[\mathrm{C} 2(R), \mathrm{C} 3(R), \mathrm{C} 17(S)$ and $\mathrm{C} 18(R)]$ and, since the space group is centrosymmetric, the molecule exists in the solid state as a racemic pair.

The phenyl and methyl substituents on C2 and C17 favour a flattening of the pyramid-like geometry around atom N16, resulting in the sum of the bond angles around N16 being $345.8(6)^{\circ}$, compared with 335.31° measured for an analogous unsubstituted pyrrolidine moiety (Pedrosa et al., 2002). Atom C8 bears a benzoyl group which, because of steric hindrance, cannot maintain a stable planar conformation. The O1-C24-C25-C26 torsion angle and the short C24-O1 and long C24-C25 bond distances (Table 1), compared with the corresponding geometric parameters of a similar structural moiety $\left(\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{C}=0.32^{\circ}, \mathrm{C}=\mathrm{O}=1.223 \AA\right.$ and $\mathrm{C}-\mathrm{C}=$ 1.501 Å; Nagendrappa \& Begum, 1999), indicate a hampered conjugation among the pure p orbitals belonging to each atom of this fragment. The peripheral rings flanking pyrrolidine occur on the same side and almost parallel to each other, thus causing a noteworthy steric hindrance; this is reflected in the C18-C3 bond distance, which is longer than expected (Table 2), as already shown in another 'boat-like' structure in which the equivalent bond length is $1.573 \AA$ (Huang et al., 2001).

The crystal packing of (I) features two weak cyclic hydrogen-bonding interactions both lying across crystallographic inversion centres (Table 2). The first interaction, viz. $\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{O} 3^{\mathrm{i}}[\mathrm{C} \cdots \mathrm{O}=3.272$ (3) \AA; symmetry code: (i) $-x$, $2-y,-z$], involves one of the two anhydride O atoms as acceptor and an aromatic $\mathrm{C}-\mathrm{H}$ group as donor, leading to a $R_{2}^{2}(16)$ graph-set pattern (Bernstein et al., 1995). The second interaction, viz. $\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{O} 1^{\mathrm{ii}} \quad[\mathrm{C} \cdots \mathrm{O}=3.484$ (3) \AA; symmetry code: (ii) $1-x, 2-y, 1-z]$, involves, uniquely, the benzoyl group of two enantiomeric units joined in an $R_{2}^{2}(10)$ graph-set pattern. These intermolecular connections combine to give a 'chain of rings' ribbon polymer $N_{2}=C_{2}^{2}$ [$\left.R_{2}^{2}(16) R_{2}^{2}(10)\right]$ (Bernstein et al., 1995) extending along the [101] crystallographic direction (Fig. 2). Other weak dipolar and hydrophobic interactions support the overall lattice.

Experimental

Thiocoumarin (1.0 equivalent) and N-benzoyl- N-methylalanine (1.2 equivalents) were reacted in dioxane $(200 \mathrm{ml})$ after addition of acetic anhydride (5.0 equivalents), yielding (I), as described by Grassi et al. (2005). After purification, colourless crystals of (I) (m.p. 416417 K) were obtained by slow evaporation from dioxane.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} \\
& M_{r}=455.51 \\
& \text { Triclinic, } P \overline{1} \\
& a=8.6245(7) \AA \\
& b=11.6423(10) \AA \\
& c=13.1778(11) \AA \\
& \alpha=97.658(3)^{\circ} \\
& \beta=104.134(3)^{\circ} \\
& \gamma=110.821(3)^{\circ} \\
& V=1163.44(17) \AA^{\circ}
\end{aligned}
$$

Data collection

Bruker X8 CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.789, T_{\text {max }}=0.95$
17961 measured reflections

Refinement

Refinement on F^{2}
4015 independent reflections 3329 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=25^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0886 P)^{2} \\
&+0.5138 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.50 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.162$
$S=1.10$
4015 reflections
300 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

O1-C24	$1.212(3)$	S1-C2	$1.900(2)$
O2-C21	$1.185(3)$	C3-C18	$1.583(3)$
O3-C23	$1.188(3)$	C24-C25	$1.491(3)$
S1-C9	$1.765(2)$		
			$117.0(2)$
C9-S1-C2	$91.48(10)$	C2-N16-C19	$117.56(18)$
C2-N16-C17	$111.22(17)$	C17-N16-C19	
S1-C2-N16-C17	$-80.3(2)$	O1-C24-C25-C30	$-147.8(3)$
C2-N16-C17-C23	$86.5(2)$	O1-C24-C25-C26	$30.0(3)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{O} 3^{\mathrm{i}}$	0.93	2.48	$3.272(3)$	143
$\mathrm{C} 26-\mathrm{H} 26 \cdots 1^{\mathrm{ii}}$	0.93	2.60	$3.484(3)$	159

Symmetry codes: (i) $-x,-y+2,-z$; (ii) $-x+1,-y+2,-z+1$.

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: X8 APEX (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW (Bruker, 2000); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1509). Services for accessing these data are described at the back of the journal.

References

Albrecht, U., Wartchow, R. \& Hoffmann, H. M. R. (1992). Angew. Chem. Int. Ed. Engl. 31, 910-913.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2000). X8 APEX, SAINT (Version 7.06) and XPW (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

organic compounds

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Grassi, G., Risitano, F. \& Cordaro, M. (2005). Org. Lett. Submitted.
Huang, J.-M., Yang, C.-S., Tanaka, M. \& Fukuyama, Y. (2001). Tetrahedron, 57, 4691-4698.
Marchand, A. P., Annapurna, P., Taylor, R. W., Simmons, D. L., Watson, W. H., Nagl, A., Flippen-Anderson, J. L., Gilardi, R. \& Clifford, G. (1990). Tetrahedron, 46, 5077-5084.
Mehta, G., Chebiyyam, P., Padmaja, N., Ramakumar, S. \& Viswamitra, M. A. (1989). Tetrahedron Lett. 30, 6895-6898.

Mehta, G., Chebiyyam, P., Padmaja, N. \& Viswamitra, M. A. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1747-1749.
Mehta, G., Srinivas, K., Vidya, R., Uma, R., Kunwar, A. C., Kumar, K. R. \& Variamani, M. (1998). Tetrahedron, 54, 10879-10890.
Nagendrappa, G. \& Begum, N. S. (1999). Tetrahedron, 55, 7923-7934.
Pedrosa, R., Andrei, C., de las Heras, L. \& Nieto, J. (2002). Org. Lett. 4, 25132516.

Sheldrick, G. M. (1996). SADABS. Version 2.10. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

